PHYSICAL REVIEW E, VOLUME 65, 061406
Theory of structural transformations in ferrofluids: Chains and “gas-liquid” phase transitions
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We consider a ferrofluid consisting of identical spherical particles with a permanent magnetic moment.
Under the assumption that linear flexible chains can appear in the ferrofluid, we estimate the distribution
function of the number of particles inside the chain. The analysis is done and simple expressions for the size
distribution function are obtained in asymptotics of a strong magnetic interaction between the particles inside
one chain. We studied the influence of the linear chains on conditions and scenarios of bulk “gas-liquid” phase
transition in the ensemble of the particles under an infinitely strong magnetic field. In order to study the
influence of the chains on bulk “gas-liquid” phase transition in the ensemble of the particles, their chemical
potential u is calculated in the model of separate interacting particles as well as in the model with chains,
taking into account the interaction between them. When the temperature is low enough, van der Waals loops
appear on the plots gft versus volume concentratiop of the particles in the first model; function(¢)
increases monotonically in the second model for all examined temperatures. This means that the condensation
“gas-liquid” phase transition can take place in the model of individual particles; however, formation of the
chains in real ferrofluids prevents the appearance of this transition.
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[. INTRODUCTION them for applications and generalizations.
A simple model of the chains as straight rodlike aggre-

Ferrofluids are colloidal suspensions of single-domain fergates was suggested in Rgt4]. This model allows us to
roparticles in a liquid solvent. To prevent agglomeration ofdetermine the distribution of the chains over the number of
the particles under van der Waals forces, they are coated lparticles inside them, as well as to estimate the influence of
stabilizing surfactant layers. As a result, only magnetodipoleéhe chains on rheological properties of ferrofluids in a wide
and steric interactions between the particles are significantegion of the magnitude of the external magnetic field. How-
Numerous experiments show that, owing to these interacever, one needs to admit that the model of the chains as
tions, various inner microstructures and mesostructures castraight rods overestimates both their mean length and their
appear in ferrofluids. These structures strongly affect macranfluence on macroscopic properties of ferrofluids. An alter-
scopic properties of the systems. native model of the chains was developed in Rdf5].

Two types of microstructures in ferrofluids are mostAnalysis of the size distribution of the long chains without a
probable—bulk droplike and linear chainlike aggregates. Thenagnetic field has been done in Rgf6] on the basis of the
bulk “drops” were observed in many experimer(see, for theory of polymer macromolecules consisting of a very high
example, Refs[1-5]). The phenomenon of the appearancenumber of monomers. One needs to note that in real ferro-
of these drops, treated as “gas-liquid” phase transitions irfluids the long chains, with the number of particles compa-
the ensemble of the single particles, has been studied thetable with those in typical macromolecules, can hardly ap-
retically in Refs.[6—11]. These investigations show that the pear. Moreover, the long polymerlike chains inevitably have
magnetic field induces the phase transition, and the tempera- coil-like structure. In these coils the magnetic interaction
ture of the particle condensation under the field is highebetween the particles, being far from each other along the
than without the field. This conclusion is in agreement withchain, but closely situated in space, has the same order of
experiments. magnitude as the interaction between the nearest particles in

Linear “chains” in ferrofluids have been studied theoreti- the chain. Therefore, interaction between the particles far
cally in Ref.[12]. However, in this work analysis of the along the chain should play a very important role in the
chains has been performed using known methods of statistfermation of the structure and size distribution of the long
cal thermodynamics of homogeneous density fluctuationgolymer-like chains. This circumstance, which was not taken
Only binary correlations between the particles have beeinto account in mode]16], was recently discussed in Ref.
taken into account in this model. That is why the structures[17].
studied in Ref[12], are, rather, “clouds” of the particles, not A qualitative model of the inner phase state in ferrofluids
chains, in the usual sense of the word. The chains, as longvith interacting chains was suggested in REE8]. The
linear aggregates of the closely arranged ferroparticles, hav@odel predicts a condensational bulk phase transition in the
been investigated in Ref13]. However, the results of this ferrofluid with chains. However, the results of the model are
theory are too cumbersome; it is not a simple problem to useletermined by several phenomenological parameters that are

not calculated in the model.
A microscopic study of the influence of the chain-chain
*Email address: Andrey.Zubarev@usu.ru interaction on the phase state of ferrofluids has been done in
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Refs.[16—19 on the basis of the modglL6] of the chains as interaction between the chains and study the influence of the
long polymer macromolecules. As it was noted, for thesechains on the “gas-liquid” phase transition under an infi-
very long chains, interaction between the particles, being imitely strong magnetic field. The qualitative result of this
one chain and situated far from each other along the chaiifvestigation is that in the model of ferrofluid with chains we
plays a very importantjnot smaller than the interaction be- did not find van der Waals loops on plots of chemical poten-
tween particles from different chainsole in the formation ~tial u of the particles versus their volume concentration
of the chain structure. However, this interaction of the par-This means that the appearance of the chains indeed prevents
ticles of one chain was not taken into account in these modthe condensational “gas-liquid” phase transition. However,
els. Nevertheless, the main conclusions of REf&—19, we cannoF exclude that the fact qf m(-)notonous. dependence
namely, the fact that the characteristic size of the chain def # 0N ¢ is a result of our approximation and think that the
creases due to the chain-chain interaction and that this inteftriguing problem of the phase transition in the ensemble of
action prevents the appearance of bulk condensation phagperropartlcles deserves further thorough investigation.
transition, are important. The conclusion that the “gas-
liquid” phase transition is impossible in the ensemble of thell. DISTRIBUTION OF THE CHAINS OVER THE NUMBER
dipole particles was also made in thed20]. OF PARTICLES

The conclusion that the spatial separation of ferrofluids to
two phases with different concentrations of ferroparticles

cannot take place and that a decrease in temperature o i m the magnetic moment of the particle, denotes the

leads to the formation of more and more long chains in drodynamical volume concentration, agd denotes the
macroscopically homogeneous system was made in Ref y y > ag

[21-23 on the basis of the results of numerical simulations.nur.nber of chains in a unit \_/ol_ume of t_he system. Any inter-
However, one needs to stress that the experimghts) action be_tw_een.the cha|_ns IS !gr!ored in this part. .
clearly demonstrate the appearance of the bulk droplike ag- '[.he d_II_StI‘CIjbltJtIOI‘]. fun{:tlorgn 'Its Enportz:lt ;or our consu:—th
gregates in ferrofluids under low enough temperature and/o rz_atlonl. 0 efet;]ml?e ! }/Ive_dwn e fownt_ e Iree energy ot the
a high magnetic field. Therefore there is a contradiction peYNit volume ot the ferrofiuid as a functiona ah.
tween the laboratory experiments, on one hand, and numeri- g

cal simulation as well as analytical models that do not ignore E= kTE (Qn |n_”+gnfn
appearance of the chains, on the other. The origin of this n e

contradiction is as yet unknown. i ) . .
Thus the known theories of the inner microstructures in' e first term in brackets of Eq1) is the entropy of ideal

ferrofluids, both linear and bulk ones, cannot answer th&as ofn-particle chainsf, is dimensionless own free energy
question of what the structures correspond to for the giveﬁ’f the chain due_to |_ts inner structure and interaction with the
ferrofluid under a given external condition. What appear£xtérnal magnetic field. o
earlier—the linear chains or the bulk drops? And under what The true functiong, provides a minimum of the func-
conditions? Since the macroscopic properties of ferrofluid§ional F under the obvious condition
depend strongly on their microscopic structure, the answer to
these questions is very important for understanding the E ng _e 0= 4_7Ta3 )
physical origin of many phenomena in magnetic fluids. n “v’ 3

To solve this problem, it is necessary to develop a micro-
scopic theory of ferrofluids taking into account the possibil-The standard calculations give
ity of the chains’ appearance, and interactions between them
as well as between individual particles. Then, on the basis of gh=exp(—f,—An), ©)
this model, one can determine the conditions of the bulk ) o )
“drop” formation as a result of the “gas-liquid” phase tran- where\ is the Lagrange multiplier to be determined by sub-

sition in the ensemble of the particles. Study of both thesétituting Eq.(3) into Eq. (2). , o _

problems is the aim of our work. The problem now is to determirfg . This dimensionless
The paper is organized as follows. In the first part alf®€ energy may be presented as

simple model of the flexible chains, taking into account the _

fluctuations of their shape as well as the orientations of mag- fa==InZ,,

netic moment of the particles inside the chains, is suggested. N A

Any interactions between the chains are ignored in this part. ~ _ _ S 4 m* D 3(Viri)(Vi+1ri)

We restrict our analysis by two limiting casé$) the energy nT | EXR el MiTT & .

of interaction between the nearest particles in one chain is '

Let us consider a system of identical ferromagnetic
heres of radiua (including the surface layersWe denote

L e=272.... (1

much more than the energy of interaction of the particles (viviiq) n
with an external magnetic field2) the case of inverse rela- - I dvdr;, (4)
tion between these two energies. The point is that, namely, in ri =1
these limiting situations final results can be obtained using
reliable regular mathematical methods. = mH
In the second part of the work we take into account the kT~
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Here v; is a unit vector aligned along the magnetic momentgates are considered, we must exclude the close positions of
of the ith particle in the chainy; is a vector connecting the (i—1)th and (+1)th particles and pu@e[0,].

centers of theth and (+1)th particles. The first term in

The appearance of the chains in ferrofluids is expected

square brackets of Ed4) is the dimensionless energy of only when the dimensionless parameteris significantly
interaction of the particles with magnetic figit] the second more than unity. Therefore, the exponent in Eg).decreases
one is the dimensionless energy of magnetic interaction berapidly with the increase in distancédetween centers of the
tween the particles inside the chain. Only the interaction betwo neighboring particles. Taking this into account, one can
tween nearest neighbors is taken into account here. The probstimateZ,, in Eq. (6) as

lem now is to calculate the many-particle integfd). We

cannot do this in a general case; three typical situations are

considered below.

A. Zero field
The statistical integral4) now is

m? " (nr) (v
Zn:f exp{ﬁ 21 (3—r5

_(ViVi:l))lHl dedI’j. (5)

I’i 1=

It is convenient to introduce a local coordinate system with
axis Oz aligned along the unit vectar; . We may also use

the coordinate angle8, w, ¢, andy so that

Vit1,=COSw, Vjy1x=SiNwCOSY, vj,1y=Sinwsiny,

ri,=rcose, rj,=rsingcose, r;,=rsindsing.

Using these notations, we have

S (ial)  (viviey)
e 5 3

ri ri

={3 cosH[ cosh cosw+sinfsinw cog d— i) ]

1
—Ccosw}—.
ri

One can easily see that the integf@l can be rewritten as

8a® )
fex y—3f(Q) redrd()
r

n—1

Z,=4m . (6)

where

m2

- 8a%kT’

Y

f(Q)=3 cosf[cosh cosw+sindsinw cog ¢— )]

—COSw,

dQ)=d cosfd coswd pdip.

In integral (6) r=2a, ¢,4e[0,2r], we[—m,7]. At

Zo=Zon=4m

= f(Q)
3
(2a) f dﬂfo exp( y(1+§)3

n—-1
X (1+)%d¢

~41

(2a)3f exd yf(Q)]dQ

o n—-1
X f exp{—3yf(Q)§]d4
0

=4

s [ exdyf(Q)] }“1

(2a) f 3,1(Q) dQ , (7)
where{=(r/2a)—1. The symbol O aZ,, means thaHH=0.

The functionf has a maximum al= w= ¢==0. Since
v is assumed to be large, éx(2)] has a very sharp maxi-
mum at this point and rapidly decreases when the angles
0,0, ¢, deviate from zero. Thus we can estimatg in the
following way:

(Za)S n—1
ZO”%M{WJ exp[yf(ﬂ)]dﬂ}

=4

ij £(Q dﬂrl
[ etytidnl

Here we take into account th&f0)= 2. After manipulations
the last integral can be transformed to

1sinh( y+/1+3x2
f equf(m]dnzs(w)?lf M—z)dx.
0 yy1+3x
Finally, we get
fn:_InZOn,
Zon=~(4m)"[ oo™t y>1, €)]
149 2flsinl“(y\/1+3x2d
=—| ———dx
AR yV1+3x2

The last integral can be calculated numerically. For applica-
tions, the following asymptotic estimate might be conve-

the same time, since, namely, linear chains, not bulk aggredient:
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1 2 3 4 Y FIG. 2. The mean numbegn) of particles in the chains for zero
field as a function of the dimensionless parametef the magnetic

FIG. 1. The numerical calculation df in Eq. (8) (line 1) and interaction. Curves 1 and 2 correspondgte 0.05 and 0.15, respec-

asymptotic estimat€9) (line 2).

tively.
2 (1sinh(yy1+ 3x? 1 exp2y) B. Nonzero weak fields: short chains
YJo  yy1+3x 04 Let us now assume that the dimensionless field non-

© zero, but much less than the dimensionless parametenf2
the interparticle interaction, i.eq<<y, y>1. Because of
It should be noted that in approximati¢®) our result for the  the first strong inequality, the second term in square brackets
integral in Eq.(6) (which isJgv in our notationg coincides  in Eq. (4) varies with the vectop; much faster than the first
with those in Ref[13]. one. Let vectow; be given. Sincey>1, the exponent in Eq.
The comparison of results of the numerical calculation of(4) has a sharp maximum when all vectars and r; are
Jo in Eq. (8) and asymptotic estimai®) is shown in Fig. 1.  parallel tor,. Therefore, the statistical integra}, can now
Even fory=1 the difference is about 10%. be estimated as
Substituting Eq.(8) into Eq. (3) and then into Eq(2),

after transformationfl4] we get Zn~ZOnJ exn(avy)]dv,.

1
=—X"eo)exXp(—&o), : :
On v (0)€XP(~ o) After integration overv; we have

Jo( ) sinh(an
go=In——, (10 fo=—InZ,~ —In%—ln Zon- (13)
X(e)= 1+2¢expe)—V1t4pexpe) Substituting Eq(13) into Egs.(3) and (2), using results of
2¢ expe) ' Ref.[10], we get
Using estimat&9) with logarithmic accuracy, one can obtain gn=Y"exp — &),
g0=27. (11) <n>
13

Substituting Eq(11) into Eq.(10) we arrive at the results of
Ref.[14], which were obtained by neglecting the fluctuations
of the shape of the chains and the orientations of magnetic
moments of the particles inside them.

Some results of calculations of the mean number of par-
ticles in the chains, 1.1

1 o
(n)=—— , (12 1 ! | ! |
v 0 02 04 0.6 0.8 a
> On
n=1

FIG. 3. The mean numbemn) of particles in the chains vs a
dimensionless weak o(<vy) magnetic field fory=2; ¢=0.05
are shown in Fig. 2. (curve ) and ¢=0.15(curve 2.
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2y cosha + sinha — (2y cosha + sinha)?— 4y? Joo
Y= ;
2y 400
(14
300 —
y=apexpey), a<y, y>1.
One can easily see thit=X(g,) whena=0. 200
The mean numbefn) of the particles in the chain as a .
function of the dimensionless field, calculated with the 100 —

help of Egs.(12) and(14), is shown in Fig. 3. One needs to
note that the estimate fat, and, therefore, relationd.3) and |
(14), are justified only for short enough chains for which 1 9 3 4 Y
fluctuation deviations of the magnetic moment of all par-

ticles from the moment of the first one, are small. The crite- FIG. 4. Calculations of the paramet&s using Eq.(16) (curve
ria, when the restriction is valid, was estimated in R&#] 1) and estimaté17) (curve 2.

as(n)<2vy. Figure 3 shows that this inequality holds in a

wide enough region of volume concentratiprand a dimen-  The accuracy of the estimat&?) is illustrated in Fig. 4.

sionless magnetic field. Using Eq.(17) in Egs.(3) and(2), after the same calcu-
lations as in Ref[14], we obtain the following expression
C. Very strong magnetic field (a>y>1). for the functiong, :

Unlike the previous case< 1y, the maximum of the ex- 1
ponent in Eq.(4) now corresponds to identical orientations Un=—X"(e..)eXp —&..),
of all »; along the vector. When vectow; deviates fromy, v
the first term in square brackets of the exponent factor varies
faster than the second one. Taking this into account and using £,=INJ.(7y), (19
the same notations as before, we may estimate the statistical
integral Z,, for the situation involving a large magnetic field whereX is the same function as in E(LO).
in the following way: The mean numbein) of particles in the chain, calculated
. using Egs.(12) and (18), is shown in Fig. 5 for the same
7 :J ex;{ aE V>1—[ Ao wa exp( Si(3 o2 concentrationgp as in Fig. 2. The comparison of these fig-
n = UL ' Y r3 ures demonstrates the effect of a strong magnetic field on the
characteristic length of the chains.
n-1 It should be noted that the results0) and (14) coincide
with logarithmic accuracy with those in Rdfl4], obtained
by neglecting the thermal fluctuations of the chain structure.

X 6— 1)) r2drd cosé

sinha\" 833 Therefore, the modélL4] is an upper estimate for the size of
:(477 ) ZWJ exp( y—(3 cog 9_1)) the chains. At the same time, the relatioil®), (14), and
a r3 (18) are obtained by neglecting the interaction of all particles
n-1 in one chain except for the nearest neighbors. The interaction
% r2drd cosé (15) of “far” particles increases the absolute value of the energy
of the particle in the chains, hence increasing the average
(symbol at Z, means that the field is assumed to be infi- <n>
nitely strong. Repeating the estimatd$) and (7) for the 8
integral overr, we rewrite Eq.(15) as
6
sinha\"
zwn:(zm ) Iy,
4
2 (1
J(y)= ;j exd y(3cog #—1)]dcosh, y>1. )
0
(16)

For analytical calculations the following asymptotic estimate
might be useful:

1 2 3 4 Y

1 FIG. 5. The mean number of the particles in the chain for an
J.~——exp2y). (17 infinitely strong field vs parametey for ¢=0.05 (curve 1 and ¢
342 =0.15 (curve 2.
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length of the chain. This means that the results, obtained in
this part, can be considered as a low estimate for the length
of the chain.

Concluding this part, we would like to briefly discuss the
difference between our way of calculating the distribution
functiong,, and those known from literature. As it was men-
tioned, the first theory12] of the chains deals with the ho-
mogeneous fluctuations of density rather than with the het-
erogeneous structures considered here. We think that the
determination of the distribution function by using the prin-
ciple of a minimum of free energy is a more direct way of
calculating than those based on considerations of chemical
kinetics[13-15, though both of them must lead to the same
results. Next, the suggested approach, unlike Re, does
not use approximations of the theory of polymer chains that X
are developed for very long macromolecules, anq, therefore, FIG. 6. The Cartesian coordinate system used for calculation of
can be used for short or moderately long chains that arg . energy(23)
expected for real ferrofluids. '

chains is assumed to be much stronger than the interaction
lIl. THE “GAS-LIQUID” PHASE TRANSITION between the chains. Estimatgss] show that this is so at
least when the total concentration of the particles is not very

. lt. \’{vas mentlon'e.d in the Introductlc_)n that bulk gas- high. Mathematically, the neglect of the effect @f, on g,
liquid” phase transitions were observed in many experiments . d
. : means that we may put in E¢L9) the same functiomy, as
with ferrofluids (see, for example, Refpl-5]). for noninteracting chains determined above
The known statistical theories of the transition in Refs. 2) We considqer the interacting chains és straight rods
[6-10] deal with the systems consisting only of individual i.e., we neglect the effect of the tr?ermal fluctuationg of their’
particles, i.e., these models ignore any linear chainlike aggre=, " 9

gates. However, numerical experimefigs—24 show that shape on the_ energy of interaction_ between them. It is a
the long enough chains appear in ferrofiuids befametead strong approximation, of course, but it allows us to study the

of) the bulk condensation phenomenon. The aim of this parfrindpal results of the chain-chain interaction and to avoid
of the work is to study the problem of equilibrium “gas- remendous mathematical problems. It was shown in Ref.
liquid” phase transition, taking into account that the chains[ld':| that this approximation is justified when the mean num-

can appear in the ferrofluid and interact with each other. ber of the pa_rt|cle5(r?) 1S Iess_ than 3/‘. F|gurg 5 demon-
The free energy of a unit volume of ferrofluid with inter- strates that this relation is valid in a wide region of the vol-

: : : : : ume concentrations of the particles.
acting chains can be presented in the following form: (3) We restrict our analysis by considering the situation of

infinitely strong magnetic fields, when all the “rods” are

1
F= kTE gnln %+gnfn+ —gnGn[gk]) . (19 parallel.
n € 2 (4) To estimateG,, we present it in the form

This form differs from Eq.(1) by the presence of the last G,=Gr+G', (20
term with G,,, which is the average energy of interaction of

then-particle chain with the other chains. From a mathemati-where the upper indices and st denote the magnetic and
cal point of view, this energy is a functional of the distribu- Steric parts of energy.

tion functiongy. First let us estimate the magnetic p&@{' of the inter-

To determine the functiog, we should minimize the free chain interaction. Using a widely spread model of pair inter-
energy(19) under condition(2). Unfortunately, this problem action (with respect to magnetic fluids it was used success-
cannot be solved strictly because of two fundamental diffifully in theory [9]), we may write
culties. First, the exact form fdg,, is unknown even for the
simplest systems—suspensions of identical spheres. This is 9 KTCM O] = 00> Wailk. (22)
connected with the usual problem of statistical physics of K
dense systems. Second, because of the @fmthe varia- ) . . )
tion equationsF/8g,=0 is a nonlinear one of the integral WhereWn, is the average magnetic energy of interaction of
type. Such equations have no exact analytical solutions. WO parallein- andk-particle chains; that is,

To overcome these fundamental problems and to reach
physically clear results, we use the following approxima- Wnk:_mZJ
tions.

(1) We neglect the influence of the interactions between
the chains on the distribution functiagy,. Physically, this Here r;; is the distance between thigh particle in the
means that the interaction between the nearest particles in timeparticle chain andth particle in thek-particle chain, and

dv. (22

ij i
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&ij is the difference betweencoordinates of these particles 2a o &2

in a coordinate system with the ax@®z aligned along the S(x)= fo pdp f,z—m 5 3T25,2
magnetic fieldFig. 6). Integration in Eq(22) is held over all VeaT-ptrzax| (pTHE)
positions of, say, thé&-particle chain(the n-particle one as- 1

sumed to be fixed taking into account that the chains cannot - —) £l.

overlap. (p?+&%)%2

Let the origin of the Cartesian coordinate system, shown
in Fig. 6, be at the center of the first particle in the first The integral ovek is internal and it is to be calculated first.
(n-particle chain, andx,y,z be the coordinates of the first The integral ovep is external and is to be calculated second.
particle in the secondk¢particle) chain. Using the approxi- The order of integration is of principal importance here.

mation of the chains as straight rods, we have One can show that the first integral in square brackets of
Eq. (24) equals zero. The functio8(x) can be presented as
n k 2
& 1 f
Wo=—m?>, > f 3 - dv, i 1-y+X
e aT e 3072 )0 wreraioy®
o s o 1 (1+x)2
&j=z+2a(j—i), p°=x"+y*. (23 “s §s3’2—231’2+(x4—1)s‘1/2 (25)
X 1+x2

de Gennes and Pincus have shown in R&2] that the
integral of type(23) from the potential of the dipole-dipole
interaction depends on the shape of the volume of integr .
tion. The correct choice of this shape, in the form of anS ar€ given. _
infinitely long cylinder with the axis aligned along the mag-  After transformationg23)—(25) we have
netic field, has been used in RE®]. This form of the vol-
ume of integration provides correct results since the mag- Gm=2 W,
netic field inside this “cavern of integration” coincides with nog ik
the field outside this “cavern,” i.e., with the macroscopic
magnetic field in the place where the two interacting par- n ok
ticles are situated. - 3 14—
We are to take into account in integkai3) that the chains Wo kT(2a) 27Tigl 121 [S(h=1+1=1)
cannot interpenetrate. Because of too complex a surface of
the chains, the exact form of the excluded volume for these
chains is too cumbersome. To get a reasonable estimate we o _ .
present this excluded volume in the same form as for twdNOW we turn to the estimation of the steric p@f' of the
spherocylinders with identical radiasand the lengths of the functional G of interaction between the chains.
cylindrical part equal to 8(n—1) and 2(k—1), respec- If_ thg volume concentratiop of the particles(therefore_,_
tively. For these two particles the excluded volume is achaing is small, we can use the well-known method of virial
spherocylinder of radius®and the length of the cylindrical €XPansion and restrict ourselves by the approximation of the
part is 2a(n+k—2). This approximation for the excluded seconq vmgl coeff|C|_ent. _The steric pa'j?tst of the free en-
volume can be used when the mean distance between tl§9Y F in this approximation can be written as
axes of the chains is significantly more thaa, 2vhich is
typical of the “gas” and “liquid” states.
Using this approximation we can rewrite the integral in
Eq. (23) as

J

At the integration the following replacemerg=1+ x>
at 2XyJ1—y has been used. Upper and lower magnitudes for

+S(k—1+i—])]. (26)

1 1
FE=SKT2 9:GR'=5KT2, gngiVak, (27

whereV;, is the excluded volume for the- and k-particle

§i2j 1 ] chains. As is well known, the approximation of the second
o]

3"V 2 2an virial coefficient for the energy of steric interaction is not
(p+ &) (p=+ &) sufficient to describe the condensation phase transition. The
B B ) problem is how to generalize E7) for the concentrated
:277{ J pdp J 3 € B 1 )df systems. This is one of the unsolved problems in the theory
2a —o\ (p2+£2)52 (pP+ P32 of dense systems of nonspherical particles, which is espe-
cially true for the statistical theory of liquid crystals.
o o Simple, however, successful approximations Fét have
+S(n—=1+j—i)+S(k— 1+'_J)]’ (24 peen suggested by Parsons in R&6] and used in theories
[26,27 of nematiclike systems. According to the idea of Ref.
[25], we may present the steric free energy in the following
where form:
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(u, u VKT

1 1
F5t=§kT; gnGﬁt=§kT% gndVid (), (28

wherel (¢) is a function only of the concentratiap. Thus,

in this model, all information on the shape of these interact-
ing particles is contained only in the excluded voluNig.

To estimate th&/¢x we again model the chains as spherocyl-
inders of radius a and the lengths of the cylindrical parts
2a(n—1) and 2a(k—1), respectively. Using classical re-
sults of the Onsager theof28] we have

-10 \ \
0 02 0.4 06 ®

2

6 n+k—§ v

ex

FIG. 7. Chemical potential of the particles in the model with
chains (curve 1) and with individual particles onlyfcurve 2 vs

Sincel(¢) in the Parsons model does not depend on the € olume concentration of the particleg=3.5.

shape of the spherocylindglise., neither om nork), we can
determine this function using known results fBf' in a

dense system of separate hard spheres. For instance, the clas- p= re_ E. (34)
sical Carnagan-Starling model gives v
1 1- 2 To obtain Eq.(33), we use Eq(3), which gives
FSl=—kT v8——. 30
> K101 (1— )2 (30) 9, n(”‘g
dp  dp "
at the same time for the spher€§;=8v. Comparing Egs. v v
(28), (29), and(30), one can get and Eq.(2), which leads to
1-32¢ N 1
()= 5 o
(1-¢) ¢ v(n%
and, therefore, For comparison, it is useful to give the following expressions

for the chemical potential and the osmotic pressure corre-

o 1-3 sponding to the same ferrofluid under the assumption that all
Gh= 6kT(1 2 ka (n+ k=2 /9- (31  particles are separatany chains are absént
-
i i - _ 8—9¢+3¢?
Finally, combining equation$19)—(21), (26), (28), and w1=kT|In g+ ¢ —8y¢
(31), we obtain (1-¢)® ’

_ 9n 1 1+ o+ @2—
I:_kTEn gnlng+gnfn+§gn; gkq)nk)i pl—k i Lf_4.y¢ . (35)
v (1-¢)
k
_ 1- 3¢ k— B é 2 i Expressiong35) for the chemical potential and the os-
nk™ (1— )2 n+k-3 ~ “ S(n =0 motic pressure of the ensemble of individual particles coin-

cide with those following from the mathematically regular

theory of perturbationg9] in linear approximation in dimen-
+S(k—=1+i—j)]|v. (32 sionless parametey of magnetodipole interaction. “Mag-

netic” parts of Eq.(35) (proportional toy) also coincide
with the relations of mean-field theory6] for infinitely
strong magnetic fields.

Some results of calculations pf as well asu, are given

in Fig. 7. When the parameter of the magnetodipole inter-
v, action is large enough, the van der Waals loops appear on the
plots of u1(¢). This means that the “gas-liquid” phase tran-
sition is predicted by the model of the individual particles. In
contrast, all of our calculations of the functigi{¢) demon-
strate monotonically increasing behavior of this function.
The mathematical origin of this result is that the “magnetic”
and the osmotic pressure of the particles, term

Using Eqgs(32), (15), and(10), we can determine the chemi-
cal potential

JF

m= vﬁz

1E 2n +<9(I>nk
5 kgngk > Dy W

A=e.—InX(e,), (n®=2, n%,, (33
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1 . o
p"= =y > gnGn[S(n—1+j—i)+S(k—1+i—])] 15
<n>nk|]

of the chemical potentigk in Egs.(32) and(33) depends on

v nonmonotonically. The absolute value of this term reaches 10
its maximum aty~2 and then rapidly decreases. This cor-

responds to the physical fact that the longer the chains are

the weaker the average magnetic interaction between the par-

ticles inside the different chains is. For a smalthe | ™| S

increases with this parameter. However, whenis large

enough, long chains appear in the suspension and play a

dominant role in the interparticle interaction. From this mo- 0 | | | |

ment, the absolute value @f™ decreases when increases 0 0.1 0.2 03 04 O

and the magnetic attraction of the chains cannot “win” over
the combination of steric repulsion and entropy phenomena. FIG. 8. Binodal curve in the modéB5) of the individual par-
The fact thatu is a monotonously increasing function of ticles.
the concentrationp shows that the chains prevent the bulk
condensation phase transition. At first sight this means thancrease the effective energy of the magnetic attraction be-
these transitions cannot take place in ferrofluids, which is ifween them, and lead to their condensation.
qualitative agreement with the results of analytical and com- Then, here, as in all works on ferrofluids with chains, we
puter modelg16,19-23. The principal coincidence of the consider a monodisperse system of ferroparticles. However,
results of very different analytical mode{Ref. [16], Os2, real magnetic fluids are always polydisperse and there are
and those suggested hgrebtained for different limit cases big particles in them that are able to aggregate. Possibly, the
with respect to the magnetic fieldhodels[16], Os2 are de- presence of small particles decreases the number of long
veloped for zero fiel) as well as the results of computer chains, consisting of big particles, and this creates conditions
experiments, allow us to think that the main conclusion,for the appearance of the bulk phase transition.
namely, that the bulk phase transition is impossible in mag- Next, tails of the central van der Waals interactions out of
netic fluids, is correct. the stabilizing layers, coating the particles, can play a deci-
However, we cannot affirm with absolute confidence thaive role in the condensation phase transitions in real ferrof-
the “gas-liquid” phase transition is impossible in ferrofluids. luids. This fact has been shown in Reff27,29.
Moreover, as it was noted, experiments demonstrate that the All of these points require a detailed study. That is why
transition occurs under suitable conditions. The result that we think that the problem concerning the bulk phase transi-
is a monotonically increasing function gfcan be an artifact  tion in ferrofluids is still open.
of the following main approximations. The phase diagrartbinoda) of the phase transitions, cal-
The first is the assumption that the arrangement of th&ulated in the mode(l35) of individual particles, is shown in
chains is typical of the “dense gas” state and that the averagEig. 8. As usual this diagram corresponds to the condition
distance between the chains in the transverse direction is
more than diameter&of the particle. Namely, in the frame- (@) =palen),  Pile)=pilen),
work of this restriction the excluded volume in calculations
(24) can be presented in the form of a spherocylinder. Inwhere ¢, and ¢, are the volume concentrations of the par-
reality, in the dense phase the particles can be packed closeticles in dilute and dense coexisting phases. The critical mag-
In the very dense phase the chains lose individuality, therenitude of the parametey for the condensation transforma-
fore their presentation as separate rods is not valid; thesion is approximately 2.65, and the critical volume
highly dense states require special consideration. concentrationy is about 13%. Since the chains prevent the
Second, strict statistical calculation of the free energy ofappearance of the phase separation, the real phase diagram
the system of interacting particléshaing shows that addi- (in the case when the phase transition is possii#e above
tional negative terms, proportional t& and higher powers the diagram for the model system of individual particles
of y, must appear in expressid@6) for W, (see, for ex- given in Fig. 8.
ample, Ref[9]). When y is large enough, these terms are, The mean numbefn) of the particles in the chains as a
more than those considered here, proportiongl.t®ne can  function of ¢, calculated along the binodal curve, corre-
expect that the terms with" can provide nonmonotonic be- sponding to mode(35) of individual particles, is shown in
havior of u as a function ofp and describe the condensation Fig. 9. On this phase diagram the mean nun{bérincreases
phase transition. Analysis of both of the mentionedvery rapidly wheny decreases. This is connected, of course,
situations—crystal-like disposition of the particles in the with the increase ofy on the binodal curve whea tends to
dense phase and the appearance of the terms wittero. Using this result and taking into account that the chains
¥2,v3, ..., in Eq.(26)— can be the subject of a more ad- prevent the bulk phase condensation, and, therefore, the
vanced theory that we plan to develop in the near future. “real” diagram, corresponding to the ferrofluid with chains
Third, the flexible shape of real interacting chains can alsdif the phase separation in these systems is possible, of
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lg<n> rium bulk “gas-liquid” phase transition in the ensemble of
the particles under an infinitely strong external field is stud-
ied. In the framework of the approximations made, we did
not find the conditions of the “gas-liquid” transition in the
system with chains. This result is in agreement with Refs.
4 - [19-23 where it is concluded that the spatial condensation
phase transition is impossible in the systems of identical hard
dipole spheres. The qualitative coincidence of the conclu-
sions of several work&urs and Refd.19-23), using quite

2 different approaches, allows us to think that this conclusion
is true. However, experimenfd&—5] clearly demonstrate the
bulk “drops” in ferrofluids under suitable conditions. The

0 : ' ' appearance of these drops and their evolution was described

0 0.2 0.06 01 ¢ theoretically in Refs[6—11] under the assumption that any

linear chains are absent in ferrofluids. Though these models,
in principal points, correspond to experimeifts-5], our
consideration shows that the chains cannot be ignored when

) think th blem is still ope lud both the energy of interaction between the particles and their
course, we think this problem IS Still Op&ione can Conclude  y,1;me concentration are not vanishing, especially if they
that when the total concentration of the particles is small

(about several percantong chain r long before th correspond to the phase diagram in the model of individual
about several percentiong chains appear long belore e \,, yivas Thys there is a gualitative contradiction between
bulk phase transition. When the concentration is near th

. N . . xperiments, where the bulk “gas-liquid” phase transitions
crr:tlcalt pom_tt'zp;(v'fo..tl:.% of the_kf)rlge partg:les con%ensattlpn, tr:ceare observed, and theories, both analytical and numerical,
phasetransitionit 1t IS possi can be a condensation ol nere the linear chains in ferrofluids are not ignored. We
individual particles and short chains.

think that several physical factors, including polydispersity
of real ferrofluids and tails of van der Waals interaction be-
IV. CONCLUSION yond the surface layers on particles, can induce the bulk

The following two problems are considered. First, the dis-phase _separations ‘T‘ these systems. Howgver, we \{v_ou_ld like
tribution function over the number of particles inside the!© admit that the intrigue of the problem of inner equilibrium

chainlike aggregate in the ferrofluid is estimated taking intophase state of ferrofluids, inner structures, and phase transi-

account the thermal fluctuations of the shape of the chains é'gons inside of them, is far from being closed and deserves an

well as the orientation of the magnetic moments of 1‘erropar-IntenSIVe study.

ticles in the chains. We study two limiting situations)

magnetic interaction between the nearest particles in the

chains is much stronger than the interaction of the particles This work was supported by grants from the Russian Ba-

with an external magnetic field ant) the inverse relation sic Research Foundation, Projects Nos. NN 00-02-17731,

between these interactions. 02-01-6072, and 01-01-00058, Grant No. CRDF, REC-005,
Second, the influence of the linear chains on the equiliband grant of BMBF N RUS 00/196.

FIG. 9. Mean number of the particles on the binodal curve
shown on Fig. 8.
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