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Theory of structural transformations in ferrofluids: Chains and ‘‘gas-liquid’’ phase transitions
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We consider a ferrofluid consisting of identical spherical particles with a permanent magnetic moment.
Under the assumption that linear flexible chains can appear in the ferrofluid, we estimate the distribution
function of the number of particles inside the chain. The analysis is done and simple expressions for the size
distribution function are obtained in asymptotics of a strong magnetic interaction between the particles inside
one chain. We studied the influence of the linear chains on conditions and scenarios of bulk ‘‘gas-liquid’’ phase
transition in the ensemble of the particles under an infinitely strong magnetic field. In order to study the
influence of the chains on bulk ‘‘gas-liquid’’ phase transition in the ensemble of the particles, their chemical
potentialm is calculated in the model of separate interacting particles as well as in the model with chains,
taking into account the interaction between them. When the temperature is low enough, van der Waals loops
appear on the plots ofm versus volume concentrationw of the particles in the first model; functionm(w)
increases monotonically in the second model for all examined temperatures. This means that the condensation
‘‘gas-liquid’’ phase transition can take place in the model of individual particles; however, formation of the
chains in real ferrofluids prevents the appearance of this transition.

DOI: 10.1103/PhysRevE.65.061406 PACS number~s!: 61.43.Hv, 75.50.Mm
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of single-domain
roparticles in a liquid solvent. To prevent agglomeration
the particles under van der Waals forces, they are coate
stabilizing surfactant layers. As a result, only magnetodip
and steric interactions between the particles are signific
Numerous experiments show that, owing to these inte
tions, various inner microstructures and mesostructures
appear in ferrofluids. These structures strongly affect ma
scopic properties of the systems.

Two types of microstructures in ferrofluids are mo
probable—bulk droplike and linear chainlike aggregates. T
bulk ‘‘drops’’ were observed in many experiments~see, for
example, Refs.@1–5#!. The phenomenon of the appearan
of these drops, treated as ‘‘gas-liquid’’ phase transitions
the ensemble of the single particles, has been studied t
retically in Refs.@6–11#. These investigations show that th
magnetic field induces the phase transition, and the temp
ture of the particle condensation under the field is hig
than without the field. This conclusion is in agreement w
experiments.

Linear ‘‘chains’’ in ferrofluids have been studied theore
cally in Ref. @12#. However, in this work analysis of th
chains has been performed using known methods of sta
cal thermodynamics of homogeneous density fluctuatio
Only binary correlations between the particles have b
taken into account in this model. That is why the structur
studied in Ref.@12#, are, rather, ‘‘clouds’’ of the particles, no
chains, in the usual sense of the word. The chains, as l
linear aggregates of the closely arranged ferroparticles, h
been investigated in Ref.@13#. However, the results of this
theory are too cumbersome; it is not a simple problem to
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them for applications and generalizations.
A simple model of the chains as straight rodlike agg

gates was suggested in Ref.@14#. This model allows us to
determine the distribution of the chains over the number
particles inside them, as well as to estimate the influence
the chains on rheological properties of ferrofluids in a wi
region of the magnitude of the external magnetic field. Ho
ever, one needs to admit that the model of the chains
straight rods overestimates both their mean length and t
influence on macroscopic properties of ferrofluids. An alt
native model of the chains was developed in Ref.@15#.
Analysis of the size distribution of the long chains without
magnetic field has been done in Ref.@16# on the basis of the
theory of polymer macromolecules consisting of a very h
number of monomers. One needs to note that in real fe
fluids the long chains, with the number of particles comp
rable with those in typical macromolecules, can hardly a
pear. Moreover, the long polymerlike chains inevitably ha
a coil-like structure. In these coils the magnetic interact
between the particles, being far from each other along
chain, but closely situated in space, has the same orde
magnitude as the interaction between the nearest particle
the chain. Therefore, interaction between the particles
along the chain should play a very important role in t
formation of the structure and size distribution of the lo
polymer-like chains. This circumstance, which was not tak
into account in model@16#, was recently discussed in Re
@17#.

A qualitative model of the inner phase state in ferroflui
with interacting chains was suggested in Ref.@18#. The
model predicts a condensational bulk phase transition in
ferrofluid with chains. However, the results of the model a
determined by several phenomenological parameters tha
not calculated in the model.

A microscopic study of the influence of the chain-cha
interaction on the phase state of ferrofluids has been don
©2002 The American Physical Society06-1
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Refs.@16–19# on the basis of the model@16# of the chains as
long polymer macromolecules. As it was noted, for the
very long chains, interaction between the particles, being
one chain and situated far from each other along the ch
plays a very important,~not smaller than the interaction be
tween particles from different chains! role in the formation
of the chain structure. However, this interaction of the p
ticles of one chain was not taken into account in these m
els. Nevertheless, the main conclusions of Refs.@16–19#,
namely, the fact that the characteristic size of the chain
creases due to the chain-chain interaction and that this in
action prevents the appearance of bulk condensation p
transition, are important. The conclusion that the ‘‘ga
liquid’’ phase transition is impossible in the ensemble of t
dipole particles was also made in theory@20#.

The conclusion that the spatial separation of ferrofluids
two phases with different concentrations of ferropartic
cannot take place and that a decrease in temperature
leads to the formation of more and more long chains in
macroscopically homogeneous system was made in R
@21–23# on the basis of the results of numerical simulatio
However, one needs to stress that the experiments@1–5#
clearly demonstrate the appearance of the bulk droplike
gregates in ferrofluids under low enough temperature an
a high magnetic field. Therefore there is a contradiction
tween the laboratory experiments, on one hand, and num
cal simulation as well as analytical models that do not ign
appearance of the chains, on the other. The origin of
contradiction is as yet unknown.

Thus the known theories of the inner microstructures
ferrofluids, both linear and bulk ones, cannot answer
question of what the structures correspond to for the gi
ferrofluid under a given external condition. What appe
earlier—the linear chains or the bulk drops? And under w
conditions? Since the macroscopic properties of ferroflu
depend strongly on their microscopic structure, the answe
these questions is very important for understanding
physical origin of many phenomena in magnetic fluids.

To solve this problem, it is necessary to develop a mic
scopic theory of ferrofluids taking into account the possib
ity of the chains’ appearance, and interactions between t
as well as between individual particles. Then, on the basi
this model, one can determine the conditions of the b
‘‘drop’’ formation as a result of the ‘‘gas-liquid’’ phase tran
sition in the ensemble of the particles. Study of both th
problems is the aim of our work.

The paper is organized as follows. In the first part
simple model of the flexible chains, taking into account t
fluctuations of their shape as well as the orientations of m
netic moment of the particles inside the chains, is sugges
Any interactions between the chains are ignored in this p
We restrict our analysis by two limiting cases:~1! the energy
of interaction between the nearest particles in one chai
much more than the energy of interaction of the partic
with an external magnetic field;~2! the case of inverse rela
tion between these two energies. The point is that, namel
these limiting situations final results can be obtained us
reliable regular mathematical methods.

In the second part of the work we take into account
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interaction between the chains and study the influence of
chains on the ‘‘gas-liquid’’ phase transition under an in
nitely strong magnetic field. The qualitative result of th
investigation is that in the model of ferrofluid with chains w
did not find van der Waals loops on plots of chemical pote
tial m of the particles versus their volume concentrationw.
This means that the appearance of the chains indeed pre
the condensational ‘‘gas-liquid’’ phase transition. Howev
we cannot exclude that the fact of monotonous depende
of m on w is a result of our approximation and think that th
intriguing problem of the phase transition in the ensemble
ferroparticles deserves further thorough investigation.

II. DISTRIBUTION OF THE CHAINS OVER THE NUMBER
OF PARTICLES

Let us consider a system of identical ferromagne
spheres of radiusa ~including the surface layers!. We denote
by m the magnetic moment of the particle,w denotes the
hydrodynamical volume concentration, andgn denotes the
number of chains in a unit volume of the system. Any int
action between the chains is ignored in this part.

The distribution functiongn is important for our consid-
eration. To determine it we write down the free energy of t
unit volume of the ferrofluid as a functional ofgn ,

F5kT(
n

S gn ln
gn

e
1gnf nD , e52.72 . . . . ~1!

The first term in brackets of Eq.~1! is the entropy of ideal
gas ofn-particle chains,f n is dimensionless own free energ
of the chain due to its inner structure and interaction with
external magnetic field.

The true functiongn provides a minimum of the func
tional F under the obvious condition

(
n

ngn5
w

v
, v5

4p

3
a3. ~2!

The standard calculations give

gn5exp~2 f n2ln!, ~3!

wherel is the Lagrange multiplier to be determined by su
stituting Eq.~3! into Eq. ~2!.

The problem now is to determinef n . This dimensionless
free energy may be presented as

f n52 ln Zn ,

Zn5E expFa(
i 51

n

n i1
m2

kT (
i 51

n21 S 3
~n ir i !~n i 11r i !

r i
5

2
~n in i 11!

r i
3 D G)

j 51

n

dn jdr j , ~4!

a5
mH

kT
.
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Heren i is a unit vector aligned along the magnetic mome
of the i th particle in the chain,r i is a vector connecting
centers of thei th and (i 11)th particles. The first term in
square brackets of Eq.~4! is the dimensionless energy o
interaction of the particles with magnetic fieldH, the second
one is the dimensionless energy of magnetic interaction
tween the particles inside the chain. Only the interaction
tween nearest neighbors is taken into account here. The p
lem now is to calculate the many-particle integral~4!. We
cannot do this in a general case; three typical situations
considered below.

A. Zero field

The statistical integral~4! now is

Zn5E expFm2

kT (
i 51

n21 S 3
~n ir i !~n i 11r i !

r i
5

2
~n in i 11!

r i
3 D G)

j 51

n

dn jdr j . ~5!

It is convenient to introduce a local coordinate system w
axis Oz aligned along the unit vectorn i . We may also use
the coordinate anglesu, v, f, andc so that

n i 11,z5cosv, n i 11,x5sinv cosc, n i 11,y5sinv sinc,

r i ,z5r cosu, r i ,x5r sinu cosf, r i ,y5r sinu sinf.

Using these notations, we have

3
~n ir i !~n i 11r i !

r i
5

2
~n in i 11!

r i
3

5$3 cosu@cosu cosv1sinu sinv cos~f2c!#

2cosv%
1

r i
3

.

One can easily see that the integral~5! can be rewritten as

Zn54pF E expS g
8a3

r 3
f ~V!D r 2drdVG n21

, ~6!

where

g5
m2

8a3kT
,

f ~V!53 cosu@cosu cosv1sinu sinv cos~f2c!#

2cosv,

dV5d cosud cosvdfdc.

In integral ~6! r>2a, f,cP@0,2p#, vP@2p,p#. At
the same time, since, namely, linear chains, not bulk ag
06140
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gates are considered, we must exclude the close position
the (i 21)th and (i 11)th particles and putuP@0,p#.

The appearance of the chains in ferrofluids is expec
only when the dimensionless parameterg is significantly
more than unity. Therefore, the exponent in Eq.~6! decreases
rapidly with the increase in distancer between centers of the
two neighboring particles. Taking this into account, one c
estimateZn in Eq. ~6! as

Zn5Z0n54pF ~2a!3E dVE
0

`

expS g
f ~V!

~11z!3D
3~11z!2dzG n21

'4pF ~2a!3E exp@g f ~V!#dV

3E
0

`

exp@23g f ~V!z#dzGn21

54pF ~2a!3E exp@g f ~V!#

3g f ~V!
dVGn21

, ~7!

wherez5(r /2a)21. The symbol 0 atZn means thatH50.
The functionf has a maximum atu5v5f5c50. Since

g is assumed to be large, exp@gf(V)# has a very sharp maxi
mum at this point and rapidly decreases when the an
u,v,f,c deviate from zero. Thus we can estimateZ0n in the
following way:

Z0n'4pF ~2a!3

3g f ~0!
E exp@g f ~V!#dVGn21

54pF v
gpE exp@g f ~V!#dVGn21

.

Here we take into account thatf (0)52. After manipulations
the last integral can be transformed to

E exp@g f ~V!#dV58~p!2E
0

1sinh~gA113x2!

gA113x2
dx.

Finally, we get

f n52 ln Z0n ,

Z0n'~4p!n@J0~g!v#n21, g@1, ~8!

J0~g!5
2

gE0

1sinh~gA113x2

gA113x2
dx.

The last integral can be calculated numerically. For appli
tions, the following asymptotic estimate might be conv
nient:
6-3
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J0~g!5
2

gE0

1sinh~gA113x2

gA113x2
dx'

1

3

exp~2g!

g3
, g@1.

~9!

It should be noted that in approximation~9! our result for the
integral in Eq.~6! ~which is J0v in our notations! coincides
with those in Ref.@13#.

The comparison of results of the numerical calculation
J0 in Eq. ~8! and asymptotic estimate~9! is shown in Fig. 1.
Even forg51 the difference is about 10%.

Substituting Eq.~8! into Eq. ~3! and then into Eq.~2!,
after transformations@14# we get

gn5
1

v
Xn~«0!exp~2«0!,

«05 ln
J0~g!

4p
, ~10!

X~«!5
112w exp~«!2A114w exp~«!

2w exp~«!
.

Using estimate~9! with logarithmic accuracy, one can obta

«052g. ~11!

Substituting Eq.~11! into Eq. ~10! we arrive at the results o
Ref. @14#, which were obtained by neglecting the fluctuatio
of the shape of the chains and the orientations of magn
moments of the particles inside them.

Some results of calculations of the mean number of p
ticles in the chains,

^n&5
1

v
w

(
n51

`

gn

, ~12!

are shown in Fig. 2.

FIG. 1. The numerical calculation ofJ0 in Eq. ~8! ~line 1! and
asymptotic estimate~9! ~line 2!.
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B. Nonzero weak fields: short chains

Let us now assume that the dimensionless fielda is non-
zero, but much less than the dimensionless parameter 2g of
the interparticle interaction, i.e.,a!g, g@1. Because of
the first strong inequality, the second term in square brac
in Eq. ~4! varies with the vectorn i much faster than the firs
one. Let vectorn1 be given. Sinceg@1, the exponent in Eq
~4! has a sharp maximum when all vectorsn i and r i are
parallel ton1. Therefore, the statistical integralZn can now
be estimated as

Zn'Z0nE exp@n~an1!#dn1 .

After integration overn1 we have

f n52 ln Zn'2 ln
sinh~an!

an
2 ln Z0n . ~13!

Substituting Eq.~13! into Eqs.~3! and ~2!, using results of
Ref. @10#, we get

gn5Yn exp~2«0!,

FIG. 2. The mean number^n& of particles in the chains for zero
field as a function of the dimensionless parameterg of the magnetic
interaction. Curves 1 and 2 correspond tow50.05 and 0.15, respec
tively.

FIG. 3. The mean number̂n& of particles in the chains vs a
dimensionless weak (a,g) magnetic field for g52; w50.05
~curve 1! andw50.15 ~curve 2!.
6-4
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THEORY OF STRUCTURAL TRANSFORMATIONS IN . . . PHYSICAL REVIEW E65 061406
Y5
2y cosha1sinha2A~2y cosha1sinha!224y2

2y
,

~14!

y5aw exp~«0!, a!g, g@1.

One can easily see thatY5X(«0) whena50.
The mean number̂n& of the particles in the chain as

function of the dimensionless fielda, calculated with the
help of Eqs.~12! and~14!, is shown in Fig. 3. One needs t
note that the estimate forZn and, therefore, relations~13! and
~14!, are justified only for short enough chains for whic
fluctuation deviations of the magnetic moment of all p
ticles from the moment of the first one, are small. The cr
ria, when the restriction is valid, was estimated in Ref.@14#
as ^n&,2g. Figure 3 shows that this inequality holds in
wide enough region of volume concentrationw and a dimen-
sionless magnetic fielda.

C. Very strong magnetic field „ašgš1….

Unlike the previous casea!g, the maximum of the ex-
ponent in Eq.~4! now corresponds to identical orientation
of all n i along the vectora. When vectorn i deviates froma,
the first term in square brackets of the exponent factor va
faster than the second one. Taking this into account and u
the same notations as before, we may estimate the statis
integralZn for the situation involving a large magnetic fie
in the following way:

Z`n5E expS a(
i

n i D)
i

dn iF2pE expS g
8a3

r 3
~3 cos2

3u21!D r 2drd cosuG n21

5S 4p
sinha

a D nF2pE expS g
8a3

r 3
~3 cos2 u21!D

3r 2drd cosuG n21

~15!

~symbol` at Zn means that the field is assumed to be in
nitely strong!. Repeating the estimates~6! and ~7! for the
integral overr, we rewrite Eq.~15! as

Z`n5S 4p
sinha

a D n

J`
n21~g!vn21,

J`~g!5
2

gE0

1

exp@g~3 cos2 u21!#d cosu, g@1.

~16!

For analytical calculations the following asymptotic estima
might be useful:

J`'
1

3g2
exp~2g!. ~17!
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The accuracy of the estimate~17! is illustrated in Fig. 4.
Using Eq.~17! in Eqs. ~3! and ~2!, after the same calcu

lations as in Ref.@14#, we obtain the following expression
for the functiongn :

gn5
1

v
Xn~«`!exp~2«`!,

«`5 ln J`~g!, ~18!

whereX is the same function as in Eq.~10!.
The mean number̂n& of particles in the chain, calculate

using Eqs.~12! and ~18!, is shown in Fig. 5 for the same
concentrationsw as in Fig. 2. The comparison of these fi
ures demonstrates the effect of a strong magnetic field on
characteristic length of the chains.

It should be noted that the results~10! and ~14! coincide
with logarithmic accuracy with those in Ref.@14#, obtained
by neglecting the thermal fluctuations of the chain structu
Therefore, the model@14# is an upper estimate for the size o
the chains. At the same time, the relations~10!, ~14!, and
~18! are obtained by neglecting the interaction of all partic
in one chain except for the nearest neighbors. The interac
of ‘‘far’’ particles increases the absolute value of the ener
of the particle in the chains, hence increasing the aver

FIG. 4. Calculations of the parameterJ` using Eq.~16! ~curve
1! and estimate~17! ~curve 2!.

FIG. 5. The mean number of the particles in the chain for
infinitely strong field vs parameterg for w50.05 ~curve 1! andw
50.15 ~curve 2!.
6-5
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A. YU ZUBAREV AND L. YU. ISKAKOVA PHYSICAL REVIEW E 65 061406
length of the chain. This means that the results, obtaine
this part, can be considered as a low estimate for the len
of the chain.

Concluding this part, we would like to briefly discuss th
difference between our way of calculating the distributi
functiongn and those known from literature. As it was me
tioned, the first theory@12# of the chains deals with the ho
mogeneous fluctuations of density rather than with the h
erogeneous structures considered here. We think that
determination of the distribution function by using the pri
ciple of a minimum of free energy is a more direct way
calculating than those based on considerations of chem
kinetics@13–15#, though both of them must lead to the sam
results. Next, the suggested approach, unlike Ref.@16#, does
not use approximations of the theory of polymer chains t
are developed for very long macromolecules, and, theref
can be used for short or moderately long chains that
expected for real ferrofluids.

III. THE ‘‘GAS-LIQUID’’ PHASE TRANSITION

It was mentioned in the Introduction that bulk ‘‘ga
liquid’’ phase transitions were observed in many experime
with ferrofluids ~see, for example, Refs.@1–5#!.

The known statistical theories of the transition in Re
@6–10# deal with the systems consisting only of individu
particles, i.e., these models ignore any linear chainlike ag
gates. However, numerical experiments@21–24# show that
the long enough chains appear in ferrofluids before~instead
of! the bulk condensation phenomenon. The aim of this p
of the work is to study the problem of equilibrium ‘‘gas
liquid’’ phase transition, taking into account that the cha
can appear in the ferrofluid and interact with each other.

The free energy of a unit volume of ferrofluid with inte
acting chains can be presented in the following form:

F5kT(
n

S gn ln
gn

e
1gnf n1

1

2
gnGn@gk# D . ~19!

This form differs from Eq.~1! by the presence of the las
term with Gn , which is the average energy of interaction
then-particle chain with the other chains. From a mathem
cal point of view, this energy is a functional of the distrib
tion functiongk .

To determine the functiongn we should minimize the free
energy~19! under condition~2!. Unfortunately, this problem
cannot be solved strictly because of two fundamental d
culties. First, the exact form forGn is unknown even for the
simplest systems—suspensions of identical spheres. Th
connected with the usual problem of statistical physics
dense systems. Second, because of the termGn , the varia-
tion equationdF/dgn50 is a nonlinear one of the integra
type. Such equations have no exact analytical solutions.

To overcome these fundamental problems and to re
physically clear results, we use the following approxim
tions.

~1! We neglect the influence of the interactions betwe
the chains on the distribution functiongn . Physically, this
means that the interaction between the nearest particles i
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chains is assumed to be much stronger than the interac
between the chains. Estimates@16# show that this is so a
least when the total concentration of the particles is not v
high. Mathematically, the neglect of the effect ofGn on gn
means that we may put in Eq.~19! the same functiongn as
for noninteracting chains determined above.

~2! We consider the interacting chains as straight ro
i.e., we neglect the effect of the thermal fluctuations of th
shape on the energy of interaction between them. It i
strong approximation, of course, but it allows us to study
principal results of the chain-chain interaction and to av
tremendous mathematical problems. It was shown in R
@14# that this approximation is justified when the mean nu
ber of the particleŝ n& is less than 2g. Figure 5 demon-
strates that this relation is valid in a wide region of the v
ume concentrations of the particles.

~3! We restrict our analysis by considering the situation
infinitely strong magnetic fields, when all the ‘‘rods’’ ar
parallel.

~4! To estimateGn we present it in the form

Gn5Gn
m1Gn

st , ~20!

where the upper indicesm and st denote the magnetic an
steric parts of energy.

First let us estimate the magnetic partGn
m of the inter-

chain interaction. Using a widely spread model of pair int
action ~with respect to magnetic fluids it was used succe
fully in theory @9#!, we may write

gnkTGn
m@gk#5gn(

k
Wnkgk , ~21!

whereWnk is the average magnetic energy of interaction
two paralleln- andk-particle chains; that is,

Wnk52m2E F(
i 51

n

(
j 51

k S 3
j i j

2

r i j
5

2
1

r i j
3 D GdV. ~22!

Here r i j is the distance between thei th particle in the
n-particle chain andj th particle in thek-particle chain, and

FIG. 6. The Cartesian coordinate system used for calculatio
the energy~23!.
6-6
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THEORY OF STRUCTURAL TRANSFORMATIONS IN . . . PHYSICAL REVIEW E65 061406
j i j is the difference betweenz coordinates of these particle
in a coordinate system with the axisOz aligned along the
magnetic field~Fig. 6!. Integration in Eq.~22! is held over all
positions of, say, thek-particle chain~the n-particle one as-
sumed to be fixed!, taking into account that the chains cann
overlap.

Let the origin of the Cartesian coordinate system, sho
in Fig. 6, be at the center of the first particle in the fi
(n-particle! chain, andx,y,z be the coordinates of the firs
particle in the second (k-particle! chain. Using the approxi-
mation of the chains as straight rods, we have

Wnk52m2(
i 51

n

(
j 51

k E F3
j i j

2

~r21j i j
2 !5/2D 2

1

~r21j i j
2 !3/2GdV,

j i j 5z12a~ j 2 i !, r25x21y2. ~23!

de Gennes and Pincus have shown in Ref.@12# that the
integral of type~23! from the potential of the dipole-dipole
interaction depends on the shape of the volume of inte
tion. The correct choice of this shape, in the form of
infinitely long cylinder with the axis aligned along the ma
netic field, has been used in Ref.@9#. This form of the vol-
ume of integration provides correct results since the m
netic field inside this ‘‘cavern of integration’’ coincides wit
the field outside this ‘‘cavern,’’ i.e., with the macroscop
magnetic field in the place where the two interacting p
ticles are situated.

We are to take into account in integral~23! that the chains
cannot interpenetrate. Because of too complex a surfac
the chains, the exact form of the excluded volume for th
chains is too cumbersome. To get a reasonable estimat
present this excluded volume in the same form as for
spherocylinders with identical radiusa and the lengths of the
cylindrical part equal to 2a(n21) and 2a(k21), respec-
tively. For these two particles the excluded volume is
spherocylinder of radius 2a and the length of the cylindrica
part is 2a(n1k22). This approximation for the exclude
volume can be used when the mean distance between
axes of the chains is significantly more than 2a, which is
typical of the ‘‘gas’’ and ‘‘liquid’’ states.

Using this approximation we can rewrite the integral
Eq. ~23! as

E F3
j i j

2

~r21j i j
2 !5/2

2
1

~r21j i j
2 !3/2GdV

52pH E
2a

`

rdrF E
2`

` S 3
j2

~r21j2!5/2
2

1

~r21j2!3/2D djG
1S~n211 j 2 i !1S~k211 i 2 j !J , ~24!

where
06140
t

n
t

a-

-

-

of
e
we
o

a

the

S~x!5E
0

2a

rdrF EA(2a)22r212ax

` S 3
j2

~r21j2!5/2

2
1

~r21j2!3/2D djG .

The integral overj is internal and it is to be calculated firs
The integral overr is external and is to be calculated secon
The order of integration is of principal importance here.

One can show that the first integral in square brackets
Eq. ~24! equals zero. The functionS(x) can be presented a

S~x!5
1

2E0

1 A12y1x

~11x212xA12y!3/2
dy

5
1

4x3 F1

3
s3/222s1/21~x421!s21/2GU

11x2

(11x)2

. ~25!

At the integration the following replacements511x2

12xA12y has been used. Upper and lower magnitudes
s are given.

After transformations~23!–~25! we have

Gn
m5(

k
Wnkgk ,

Wnk52kTg~2a!32p(
i 51

n

(
j 51

k

@S~n211 j 2 i !

1S~k211 i 2 j !#. ~26!

Now we turn to the estimation of the steric partGn
st of the

functionalG of interaction between the chains.
If the volume concentrationw of the particles~therefore,

chains! is small, we can use the well-known method of viri
expansion and restrict ourselves by the approximation of
second virial coefficient. The steric partFst of the free en-
ergy F in this approximation can be written as

Fst5
1

2
kT(

n
gnGn

st5
1

2
kT(

nk
gngkVnk

ex , ~27!

whereVnk
st is the excluded volume for then- and k-particle

chains. As is well known, the approximation of the seco
virial coefficient for the energy of steric interaction is n
sufficient to describe the condensation phase transition.
problem is how to generalize Eq.~27! for the concentrated
systems. This is one of the unsolved problems in the the
of dense systems of nonspherical particles, which is es
cially true for the statistical theory of liquid crystals.

Simple, however, successful approximations forFst have
been suggested by Parsons in Ref.@25# and used in theories
@26,27# of nematiclike systems. According to the idea of R
@25#, we may present the steric free energy in the followi
form:
6-7



c

yl
ts
-

th

c

i-

ns
rre-
t all

-
in-
ar

-
the
-
In

n.
c’’

ith

A. YU ZUBAREV AND L. YU. ISKAKOVA PHYSICAL REVIEW E 65 061406
Fst5
1

2
kT(

n
gnGn

st5
1

2
kT(

nk
gngkVnk

exI ~w!, ~28!

whereI (w) is a function only of the concentrationw. Thus,
in this model, all information on the shape of these intera
ing particles is contained only in the excluded volumeVnk

ex .
To estimate theVnk

ex we again model the chains as spheroc
inders of radius 2a and the lengths of the cylindrical par
2a(n21) and 2a(k21), respectively. Using classical re
sults of the Onsager theory@28# we have

Vnk
ex56S n1k2

2

3D v. ~29!

SinceI (w) in the Parsons model does not depend on
shape of the spherocylinders~i.e., neither onn nor k), we can
determine this function using known results forFst in a
dense system of separate hard spheres. For instance, the
sical Carnagan-Starling model gives

Fst5
1

2
kTg1g1v8

12 3
4 w

~12w!2
. ~30!

at the same time for the spheresV11
ex58v. Comparing Eqs.

~28!, ~29!, and~30!, one can get

I ~w!5
12 3

4 w

~12w!2

and, therefore,

Gn
st56kT

12 3
4 w

~12w!2
v(

k
S n1k2

2

3Dgk . ~31!

Finally, combining equations~19!–~21!, ~26!, ~28!, and
~31!, we obtain

F5kTSnS gn ln
gn

e
1gnf n1

1

2
gn(

k
gkFnkD ,

Fnk56F 12 3
4 w

~12w!2 S n1k2
2

3D2g(
i 51

n

(
j 51

k

@S~n211 j 2 i !

1S~k211 i 2 j !#Gv. ~32!

Using Eqs.~32!, ~15!, and~10!, we can determine the chem
cal potential

m5v
]F

]w
5kTF2l1

1

2 (
nk

gngkS 2n

^n2&
Fnk1

]Fnk

]w D Gv,

l5«`2 ln X~«`!, ^n2&5(
n

n2gn , ~33!

and the osmotic pressure of the particles,
06140
t-

-

e

las- p5
mw

v
2F. ~34!

To obtain Eq.~33!, we use Eq.~3!, which gives

]gn

]w
52n

]l

]w
gn

and Eq.~2!, which leads to

]l

]w
52

1

v^n2&
.

For comparison, it is useful to give the following expressio
for the chemical potential and the osmotic pressure co
sponding to the same ferrofluid under the assumption tha
particles are separate~any chains are absent!:

m15kTF ln w1w
829w13w2

~12w!3
28gwG ,

p15kT
w

v F11w1w22w3

~12w!3
24gwG . ~35!

Expressions~35! for the chemical potential and the os
motic pressure of the ensemble of individual particles co
cide with those following from the mathematically regul
theory of perturbations@9# in linear approximation in dimen-
sionless parameterg of magnetodipole interaction. ‘‘Mag-
netic’’ parts of Eq. ~35! ~proportional tog) also coincide
with the relations of mean-field theory@6# for infinitely
strong magnetic fields.

Some results of calculations ofm as well asm1 are given
in Fig. 7. When the parameterg of the magnetodipole inter
action is large enough, the van der Waals loops appear on
plots ofm1(w). This means that the ‘‘gas-liquid’’ phase tran
sition is predicted by the model of the individual particles.
contrast, all of our calculations of the functionm(w) demon-
strate monotonically increasing behavior of this functio
The mathematical origin of this result is that the ‘‘magneti
term

FIG. 7. Chemical potential of the particles in the model w
chains ~curve 1! and with individual particles only~curve 2! vs
volume concentration of the particles;g53.5.
6-8



he
r
a
p

ay
o

e
n
f
lk
th

i
m

r
n

ag

ha
s.
t t
t

th
ag
n
-
ns
I

se
r
e

o

e

-
n

ed
he
w
d-
.
ls

be-

e
ver,
are
the

long
ons

of
ci-

rof-

hy
si-

l-

n

r-
ag-
-
e
he
gram

es

a
e-

se,

ins
the

s
, of

THEORY OF STRUCTURAL TRANSFORMATIONS IN . . . PHYSICAL REVIEW E65 061406
mm52g
1

^n2&
(
nki j

gngkn@S~n211 j 2 i !1S~k211 i 2 j !#

of the chemical potentialm in Eqs.~32! and~33! depends on
g nonmonotonically. The absolute value of this term reac
its maximum atg'2 and then rapidly decreases. This co
responds to the physical fact that the longer the chains
the weaker the average magnetic interaction between the
ticles inside the different chains is. For a smallg the ummu
increases with this parameter. However, wheng is large
enough, long chains appear in the suspension and pl
dominant role in the interparticle interaction. From this m
ment, the absolute value ofmm decreases wheng increases
and the magnetic attraction of the chains cannot ‘‘win’’ ov
the combination of steric repulsion and entropy phenome

The fact thatm is a monotonously increasing function o
the concentrationw shows that the chains prevent the bu
condensation phase transition. At first sight this means
these transitions cannot take place in ferrofluids, which is
qualitative agreement with the results of analytical and co
puter models@16,19–23#. The principal coincidence of the
results of very different analytical models~Ref. @16#, Os2,
and those suggested here!, obtained for different limit cases
with respect to the magnetic field~models@16#, Os2 are de-
veloped for zero field!, as well as the results of compute
experiments, allow us to think that the main conclusio
namely, that the bulk phase transition is impossible in m
netic fluids, is correct.

However, we cannot affirm with absolute confidence t
the ‘‘gas-liquid’’ phase transition is impossible in ferrofluid
Moreover, as it was noted, experiments demonstrate tha
transition occurs under suitable conditions. The result tham
is a monotonically increasing function ofw can be an artifact
of the following main approximations.

The first is the assumption that the arrangement of
chains is typical of the ‘‘dense gas’’ state and that the aver
distance between the chains in the transverse directio
more than diameter 2a of the particle. Namely, in the frame
work of this restriction the excluded volume in calculatio
~24! can be presented in the form of a spherocylinder.
reality, in the dense phase the particles can be packed clo
In the very dense phase the chains lose individuality, the
fore their presentation as separate rods is not valid; th
highly dense states require special consideration.

Second, strict statistical calculation of the free energy
the system of interacting particles~chains! shows that addi-
tional negative terms, proportional tog2 and higher powers
of g, must appear in expression~26! for Wnk ~see, for ex-
ample, Ref.@9#!. Wheng is large enough, these terms ar
more than those considered here, proportional tog. One can
expect that the terms withgn can provide nonmonotonic be
havior ofm as a function ofw and describe the condensatio
phase transition. Analysis of both of the mention
situations—crystal-like disposition of the particles in t
dense phase and the appearance of the terms
g2,g3, . . . , in Eq.~26!— can be the subject of a more a
vanced theory that we plan to develop in the near future

Third, the flexible shape of real interacting chains can a
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increase the effective energy of the magnetic attraction
tween them, and lead to their condensation.

Then, here, as in all works on ferrofluids with chains, w
consider a monodisperse system of ferroparticles. Howe
real magnetic fluids are always polydisperse and there
big particles in them that are able to aggregate. Possibly,
presence of small particles decreases the number of
chains, consisting of big particles, and this creates conditi
for the appearance of the bulk phase transition.

Next, tails of the central van der Waals interactions out
the stabilizing layers, coating the particles, can play a de
sive role in the condensation phase transitions in real fer
luids. This fact has been shown in Refs.@27,29#.

All of these points require a detailed study. That is w
we think that the problem concerning the bulk phase tran
tion in ferrofluids is still open.

The phase diagram~binodal! of the phase transitions, ca
culated in the model~35! of individual particles, is shown in
Fig. 8. As usual this diagram corresponds to the conditio

m1~w I !5m1~w II !, p1~w I !5p1~w II !,

wherew I andw II are the volume concentrations of the pa
ticles in dilute and dense coexisting phases. The critical m
nitude of the parameterg for the condensation transforma
tion is approximately 2.65, and the critical volum
concentrationw is about 13%. Since the chains prevent t
appearance of the phase separation, the real phase dia
~in the case when the phase transition is possible! lies above
the diagram for the model system of individual particl
given in Fig. 8.

The mean number̂n& of the particles in the chains as
function of w, calculated along the binodal curve, corr
sponding to model~35! of individual particles, is shown in
Fig. 9. On this phase diagram the mean number^n& increases
very rapidly whenw decreases. This is connected, of cour
with the increase ofg on the binodal curve whenw tends to
zero. Using this result and taking into account that the cha
prevent the bulk phase condensation, and, therefore,
‘‘real’’ diagram, corresponding to the ferrofluid with chain
~if the phase separation in these systems is possible

FIG. 8. Binodal curve in the model~35! of the individual par-
ticles.
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course; we think this problem is still open!, one can conclude
that when the total concentration of the particles is sm
~about several percent!, long chains appear long before th
bulk phase transition. When the concentration is near
critical point w'0.13 of the free particles condensation, t
phasetransition~if it is possible! can be a condensation o
individual particles and short chains.

IV. CONCLUSION

The following two problems are considered. First, the d
tribution function over the number of particles inside t
chainlike aggregate in the ferrofluid is estimated taking i
account the thermal fluctuations of the shape of the chain
well as the orientation of the magnetic moments of ferrop
ticles in the chains. We study two limiting situations:~a!
magnetic interaction between the nearest particles in
chains is much stronger than the interaction of the partic
with an external magnetic field and~b! the inverse relation
between these interactions.

Second, the influence of the linear chains on the equi

FIG. 9. Mean number of the particles on the binodal cu
shown on Fig. 8.
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rium bulk ‘‘gas-liquid’’ phase transition in the ensemble
the particles under an infinitely strong external field is stu
ied. In the framework of the approximations made, we d
not find the conditions of the ‘‘gas-liquid’’ transition in th
system with chains. This result is in agreement with Re
@19–23# where it is concluded that the spatial condensat
phase transition is impossible in the systems of identical h
dipole spheres. The qualitative coincidence of the conc
sions of several works~ours and Refs.@19–23#!, using quite
different approaches, allows us to think that this conclus
is true. However, experiments@1–5# clearly demonstrate the
bulk ‘‘drops’’ in ferrofluids under suitable conditions. Th
appearance of these drops and their evolution was descr
theoretically in Refs.@6–11# under the assumption that an
linear chains are absent in ferrofluids. Though these mod
in principal points, correspond to experiments@1–5#, our
consideration shows that the chains cannot be ignored w
both the energy of interaction between the particles and t
volume concentration are not vanishing, especially if th
correspond to the phase diagram in the model of individ
particles. Thus there is a qualitative contradiction betwe
experiments, where the bulk ‘‘gas-liquid’’ phase transitio
are observed, and theories, both analytical and numer
where the linear chains in ferrofluids are not ignored. W
think that several physical factors, including polydispers
of real ferrofluids and tails of van der Waals interaction b
yond the surface layers on particles, can induce the b
phase separations in these systems. However, we would
to admit that the intrigue of the problem of inner equilibriu
phase state of ferrofluids, inner structures, and phase tra
tions inside of them, is far from being closed and deserves
intensive study.
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